Esponenziale Mobile Media Regressione


Modello a media mobile esponenziale e Come primo passo nel muoversi oltre i modelli medi, modelli random walk, e modelli di tendenza lineare, i modelli non stagionali e le tendenze possono essere estrapolati utilizzando un modello a media mobile o levigante. L'assunto di base dietro media e modelli di livellamento è che la serie temporale è localmente stazionario con una media lentamente variabile. Quindi, prendiamo una media mobile (locale) per stimare il valore corrente della media e poi utilizzarla come la previsione per il prossimo futuro. Questo può essere considerato come un compromesso tra il modello media e la deriva modello random walk-senza-. La stessa strategia può essere utilizzata per stimare e estrapolare una tendenza locale. Una media mobile è spesso chiamato una versione quotsmoothedquot della serie originale, perché la media a breve termine ha l'effetto di appianare i dossi nella serie originale. Regolando il grado di lisciatura (la larghezza della media mobile), possiamo sperare di colpire un qualche tipo di equilibrio ottimale tra le prestazioni dei modelli medi e random walk. Il tipo più semplice di modello di media è il. Semplice (equamente ponderate) Media mobile: Le previsioni per il valore di Y al tempo t1 che viene fatta al tempo t è pari alla media semplice dei più recenti osservazioni m: (Qui e altrove mi utilizzerà il simbolo 8220Y-hat8221 di stare per una previsione di serie temporali Y fatta quanto prima prima possibile da un dato modello.) Questa media è centrato periodo t - (m1) 2, il che implica che la stima della media locale tenderà a restare indietro il vero valore della media locale circa (m1) 2 periodi. Così, diciamo l'età media dei dati nella media mobile semplice (m1) 2 rispetto al periodo per il quale è calcolata la previsione: questa è la quantità di tempo per cui previsioni tenderanno a restare indietro ruotando punti nei dati . Ad esempio, se si sta una media degli ultimi 5 valori, le previsioni saranno circa 3 periodi in ritardo nel rispondere a punti di svolta. Si noti che se m1, il modello di media mobile semplice (SMA) è equivalente al modello random walk (senza crescita). Se m è molto grande (paragonabile alla lunghezza del periodo di stima), il modello SMA è equivalente al modello medio. Come con qualsiasi parametro di un modello di previsione, è consuetudine per regolare il valore di k per ottenere la migliore quotfitquot ai dati, cioè i più piccoli errori di previsione in media. Ecco un esempio di una serie che sembra mostrare fluttuazioni casuali intorno a una media lentamente variabile. Innanzitutto, proviamo per adattarsi con un modello casuale, che è equivalente a una media mobile semplice di 1 termine: Il modello random walk risponde molto velocemente alle variazioni della serie, ma così facendo raccoglie gran parte del quotnoisequot nel dati (le fluttuazioni casuali) e il quotsignalquot (media locale). Se invece cerchiamo una semplice media mobile di 5 termini, si ottiene un insieme più agevole dall'aspetto delle previsioni: Il 5-termine mobile semplice rese medie in modo significativo gli errori più piccoli rispetto al modello random walk in questo caso. L'età media dei dati di questa previsione è 3 ((51) 2), in modo che tende a ritardo punti di svolta da circa tre periodi. (Per esempio, una flessione sembra essersi verificato in periodo di 21, ma le previsioni non girare intorno fino a diversi periodi più tardi.) Si noti che le previsioni a lungo termine dal modello SMA sono una retta orizzontale, proprio come nel random walk modello. Pertanto, il modello SMA presuppone che vi sia alcuna tendenza nei dati. Tuttavia, mentre le previsioni del modello random walk sono semplicemente uguale all'ultimo valore osservato, le previsioni del modello di SMA sono pari ad una media ponderata dei valori ultimi. I limiti di confidenza calcolato dai Statgraphics per le previsioni a lungo termine della media mobile semplice non ottengono più ampio con l'aumento della previsione all'orizzonte. Questo ovviamente non è corretto Purtroppo, non vi è alcuna teoria statistica di fondo che ci dice come gli intervalli di confidenza deve ampliare per questo modello. Tuttavia, non è troppo difficile da calcolare le stime empiriche dei limiti di confidenza per le previsioni di più lungo orizzonte. Ad esempio, è possibile impostare un foglio di calcolo in cui il modello SMA sarebbe stato utilizzato per prevedere 2 passi avanti, 3 passi avanti, ecc all'interno del campione di dati storici. È quindi possibile calcolare le deviazioni standard campione degli errori in ogni orizzonte di previsione, e quindi la costruzione di intervalli di confidenza per le previsioni a lungo termine aggiungendo e sottraendo multipli della deviazione standard appropriato. Se cerchiamo una media del 9 termine semplice movimento, otteniamo le previsioni ancora più fluide e più di un effetto ritardo: L'età media è ora 5 punti ((91) 2). Se prendiamo una media mobile 19-termine, l'età media aumenta a 10: Si noti che, in effetti, le previsioni sono ora in ritardo punti di svolta da circa 10 periodi. Quale quantità di smoothing è meglio per questa serie Ecco una tabella che mette a confronto le loro statistiche di errore, anche compreso in media 3-termine: Modello C, la media mobile a 5-termine, i rendimenti il ​​valore più basso di RMSE da un piccolo margine su 3 - term e 9 termine medie, e le loro altre statistiche sono quasi identici. Così, tra i modelli con le statistiche di errore molto simili, possiamo scegliere se avremmo preferito un po 'più di risposta o un po' più scorrevolezza nelle previsioni. (Torna a inizio pagina.) Browns semplice esponenziale (media mobile esponenziale ponderata) Il modello a media mobile semplice di cui sopra ha la proprietà indesiderabile che tratta le ultime osservazioni k ugualmente e completamente ignora tutte le osservazioni che precedono. Intuitivamente, dati passati devono essere attualizzati in modo più graduale - per esempio, il più recente osservazione dovrebbe avere un peso poco più di 2 più recente, e la 2 più recente dovrebbe ottenere un po 'più peso che la 3 più recente, e presto. Il modello semplice di livellamento esponenziale (SES) realizza questo. Diamo 945 denotano una constantquot quotsmoothing (un numero compreso tra 0 e 1). Un modo per scrivere il modello è quello di definire una serie L che rappresenta il livello attuale (cioè il valore medio locale) della serie come stimato dai dati fino ad oggi. Il valore di L al momento t è calcolata in modo ricorsivo dal proprio valore precedente in questo modo: Così, il valore livellato corrente è una interpolazione tra il valore livellato precedente e l'osservazione corrente, dove 945 controlla la vicinanza del valore interpolato al più recente osservazione. Le previsioni per il prossimo periodo è semplicemente il valore livellato corrente: Equivalentemente, possiamo esprimere la prossima previsione direttamente in termini di precedenti previsioni e osservazioni precedenti, in una delle seguenti versioni equivalenti. Nella prima versione, la previsione è una interpolazione tra precedente meteorologiche e precedente osservazione: Nella seconda versione, la prossima previsione è ottenuta regolando la previsione precedente nella direzione dell'errore precedente di una quantità frazionaria 945. è l'errore al tempo t. Nella terza versione, la previsione è di un (cioè scontato) media mobile esponenziale ponderata con fattore di sconto 1- 945: La versione di interpolazione della formula di previsione è il più semplice da usare se si implementa il modello su un foglio di calcolo: si inserisce in un singola cellula e contiene i riferimenti di cella che puntano alla previsione precedente, l'osservazione precedente, e la cella in cui è memorizzato il valore di 945. Si noti che se 945 1, il modello SES è equivalente ad un modello random walk (senza crescita). Se 945 0, il modello SES è equivalente al modello medio, assumendo che il primo valore livellato è impostata uguale alla media. (Torna a inizio pagina). L'età media dei dati nelle previsioni semplice esponenziale-levigante è di 1 945 relativo al periodo per il quale è calcolata la previsione. (Questo non dovrebbe essere ovvio, ma può essere facilmente dimostrare valutando una serie infinita.) Quindi, la semplice previsione media mobile tende a restare indietro punti di svolta da circa 1 945 periodi. Ad esempio, quando 945 0.5 il ritardo è di 2 periodi in cui 945 0.2 il ritardo è di 5 periodi in cui 945 0.1 il ritardo è di 10 periodi, e così via. Per una data età media (cioè quantità di ritardo), il semplice livellamento esponenziale (SES) previsione è un po 'superiore alla previsione media mobile semplice (SMA) perché pone relativamente più peso sulla più recente --i. e osservazione. è leggermente più quotresponsivequot ai cambiamenti che si verificano nel recente passato. Per esempio, un modello di SMA con 9 termini e un modello di SES con 945 0,2 entrambi hanno un'età media di 5 per i dati nelle loro previsioni, ma il modello SES mette più peso sugli ultimi 3 valori di quanto non faccia il modello SMA e al contempo doesn8217t interamente 8220forget8221 sui valori più di 9 periodi vecchi, come mostrato in questo grafico: un altro importante vantaggio del modello SES sul modello SMA è che il modello SES utilizza un parametro smoothing che è continuamente variabile, in modo che possa facilmente ottimizzato utilizzando un algoritmo quotsolverquot per minimizzare l'errore quadratico medio. Il valore ottimale di 945 nel modello SES a questa serie risulta essere 0,2961, come illustrato di seguito: L'età media dei dati in questa previsione è 10.2961 3.4 periodi, che è simile a quella di una media 6 termine mobile semplice. Le previsioni a lungo termine dal modello SES sono una linea retta orizzontale. come nel modello SMA e il modello random walk senza crescita. Si noti tuttavia che gli intervalli di confidenza calcolati da Statgraphics ora divergono in modo ragionevole dall'aspetto, e che sono sostanzialmente più stretto gli intervalli di confidenza per il modello random walk. Il modello di SES presuppone che la serie è un po 'predictablequot quotmore di quanto non faccia il modello random walk. Un modello SES è in realtà un caso particolare di un modello ARIMA. così la teoria statistica dei modelli ARIMA fornisce una solida base per il calcolo intervalli di confidenza per il modello SES. In particolare, un modello SES è un modello ARIMA con una differenza nonseasonal, un MA (1) termine, e nessun termine costante. altrimenti noto come un modello quotARIMA (0,1,1) senza constantquot. Il MA (1) coefficiente nel modello ARIMA corrisponde alla quantità 1- 945 nel modello SES. Ad esempio, se si adatta un modello ARIMA (0,1,1) senza costante alla serie analizzate qui, il MA stimato (1) coefficiente risulta essere 0,7029, che è quasi esattamente un meno 0,2961. È possibile aggiungere l'assunzione di una tendenza non-zero costante lineare per un modello SES. Per fare questo, basta specificare un modello ARIMA con una differenza non stagionale e di un (1) termine MA con una costante, cioè un (0,1,1) modello ARIMA con costante. Le previsioni a lungo termine avranno quindi una tendenza che è uguale alla tendenza medio rilevato nel corso dell'intero periodo di stima. Non si può fare questo in collaborazione con destagionalizzazione, perché le opzioni di destagionalizzazione sono disattivati ​​quando il tipo di modello è impostato su ARIMA. Tuttavia, è possibile aggiungere una costante a lungo termine tendenza esponenziale ad un semplice modello di livellamento esponenziale (con o senza regolazione stagionale) utilizzando l'opzione di regolazione inflazione nella procedura di previsione. Il tasso appropriato quotinflationquot (crescita percentuale) per periodo può essere stimato come il coefficiente di pendenza in un modello trend lineare montato i dati in combinazione con una trasformazione logaritmo naturale, oppure può essere basata su altri, informazione indipendente per quanto riguarda le prospettive di crescita a lungo termine . (Ritorna all'inizio pagina.) Browns lineari (cioè doppie) modelli esponenziale La SMA e modelli di SES per scontato che non vi è alcuna tendenza di alcun tipo nei dati (che di solito è OK, o almeno non troppo male per 1- previsioni passo avanti quando i dati sono relativamente rumoroso), e possono essere modificati per includere un trend lineare costante come indicato sopra. Che dire di tendenze a breve termine Se una serie mostra un tasso variabile di crescita o un andamento ciclico che si distingue chiaramente contro il rumore, e se vi è la necessità di prevedere più di 1 periodo a venire, allora la stima di una tendenza locale potrebbe anche essere un problema. Il semplice modello di livellamento esponenziale può essere generalizzata per ottenere un modello lineare di livellamento esponenziale (LES) che calcola le stime locali sia a livello e di tendenza. Il modello di tendenza tempo-variante più semplice è Browns lineare modello di livellamento esponenziale, che utilizza due diverse serie levigato che sono centrate in diversi punti nel tempo. La formula di previsione si basa su un'estrapolazione di una linea attraverso i due centri. (Una versione più sofisticata di questo modello, Holt8217s, è discusso qui di seguito.) La forma algebrica di Brown8217s lineare modello di livellamento esponenziale, come quello del semplice modello di livellamento esponenziale, può essere espresso in una serie di forme diverse ma equivalenti. La forma quotstandardquot di questo modello è di solito espressa come segue: Sia S denotano la serie singolarmente-levigata ottenuta applicando semplice livellamento esponenziale di serie Y. Cioè, il valore di S al periodo t è dato da: (Ricordiamo che, in semplice livellamento esponenziale, questo sarebbe il tempo per Y al periodo t1) Allora che Squot denotano la serie doppiamente levigata ottenuta applicando semplice livellamento esponenziale (utilizzando lo stesso 945) per serie S:. Infine, le previsioni per Y tk. per qualsiasi kgt1, è data da: Questo produce e 1 0 (vale a dire imbrogliare un po ', e lasciare che la prima previsione uguale l'attuale prima osservazione), ed e 2 Y 2 8211 Y 1. dopo di che le previsioni sono generati usando l'equazione di cui sopra. Questo produce gli stessi valori stimati come la formula basata su S e S se questi ultimi sono stati avviati utilizzando S 1 S 1 Y 1. Questa versione del modello è usato nella pagina successiva che illustra una combinazione di livellamento esponenziale con regolazione stagionale. modello Holt8217s lineare esponenziale Brown8217s LES calcola stime locali di livello e l'andamento lisciando i dati recenti, ma il fatto che lo fa con un singolo parametro smoothing pone un vincolo sui modelli di dati che è in grado di adattarsi: il livello e tendenza non sono autorizzati a variare a tassi indipendenti. modello Holt8217s LES risolve questo problema includendo due costanti di lisciatura, uno per il livello e uno per la tendenza. In ogni momento t, come nel modello Brown8217s, il c'è una stima L t del livello locale e una T t stima della tendenza locale. Qui vengono calcolati ricorsivamente dal valore di Y osservata al tempo t e le stime precedenti del livello e l'andamento di due equazioni che si applicano livellamento esponenziale separatamente. Se il livello stimato e tendenza al tempo t-1 sono L t82091 e T t-1. rispettivamente, la previsione per Y tshy che sarebbe stato fatto al tempo t-1 è uguale a L t-1 T t-1. Quando si osserva il valore effettivo, la stima aggiornata del livello è calcolata in modo ricorsivo interpolando tra Y tshy e le sue previsioni, L t-1 T t-1, con pesi di 945 e 945. 1- La variazione del livello stimato, vale a dire L t 8209 L t82091. può essere interpretato come una misura rumorosa della tendenza al tempo t. La stima aggiornata del trend viene poi calcolata in modo ricorsivo interpolando tra L t 8209 L t82091 e la stima precedente del trend, T t-1. utilizzando pesi di 946 e 1-946: L'interpretazione del trend-smoothing costante 946 è analoga a quella del livello-levigatura costante 945. Modelli con piccoli valori di 946 assume che la tendenza cambia solo molto lentamente nel tempo, mentre i modelli con grande 946 supporre che sta cambiando più rapidamente. Un modello con un grande 946 ritiene che il lontano futuro è molto incerto, perché gli errori in trend-stima diventano molto importanti quando la previsione più di un periodo avanti. (Torna a inizio pagina.) Il livellamento costanti di 945 e 946 può essere stimato nel modo consueto minimizzando la media errore delle previsioni 1-step-ahead quadrato. Quando questo fatto in Statgraphics, le stime risultano essere 945 0,3048 e 946 0.008. Il valore molto piccolo di 946 significa che il modello assume molto poco cambiamento di tendenza da un periodo all'altro, in modo sostanzialmente questo modello sta cercando di stimare un trend di lungo periodo. Per analogia con la nozione di età media dei dati utilizzati nella stima del livello locale della serie, l'età media dei dati che viene utilizzato per stimare la tendenza locale è proporzionale a 1 946, anche se non esattamente uguale ad esso . In questo caso risulta essere 10,006 125. Questo isn8217t un numero molto preciso in quanto la precisione della stima di 946 isn8217t realmente 3 decimali, ma è dello stesso ordine generale di grandezza della dimensione del campione di 100, così questo modello è una media di più di un bel po 'di storia nella stima del trend. La trama meteo seguente mostra che il modello LES stima un leggermente maggiore tendenza locale alla fine della serie rispetto alla tendenza costante stimata nel modello SEStrend. Inoltre, il valore stimato di 945 è quasi identica a quella ottenuta inserendo il modello SES con o senza tendenza, quindi questo è quasi lo stesso modello. Ora, queste sembrano le previsioni ragionevoli per un modello che dovrebbe essere stimare un trend locale Se si 8220eyeball8221 questa trama, sembra che la tendenza locale si è trasformato in basso alla fine della serie Quello che è successo I parametri di questo modello sono stati stimati minimizzando l'errore quadratico delle previsioni 1-step-ahead, non le previsioni a lungo termine, nel qual caso la tendenza doesn8217t fare un sacco di differenza. Se tutti si sta guardando sono errori 1-step-avanti, non si è visto il quadro più ampio delle tendenze sopra (diciamo) 10 o 20 periodi. Al fine di ottenere questo modello più in sintonia con la nostra bulbo oculare estrapolazione dei dati, siamo in grado di regolare manualmente la tendenza-smoothing costante in modo che utilizzi una base più breve per la stima di tendenza. Ad esempio, se si sceglie di impostare 946 0.1, quindi l'età media dei dati utilizzati nella stima la tendenza locale è di 10 periodi, il che significa che ci sono in media il trend negli ultimi 20 periodi che o giù di lì. Here8217s quello che la trama del tempo si presenta come se impostiamo 946 0.1, mantenendo 945 0.3. Questo sembra intuitivamente ragionevole a questa serie, anche se probabilmente è pericoloso estrapolare questa tendenza eventuali più di 10 periodi in futuro. Che dire le statistiche di errore Ecco un confronto modello per i due modelli sopra indicati, nonché tre modelli SES. Il valore ottimale di 945.per modello SES è di circa 0,3, ma risultati simili (con leggermente più o meno reattività, rispettivamente) sono ottenute con 0,5 e 0,2. exp lineare (A) Holts. levigatura con alfa e beta 0,3048 0.008 (B) Holts exp lineare. levigatura con alpha 0.3 e beta 0.1 (C) livellamento esponenziale semplice con alfa 0,5 (D) livellamento esponenziale semplice con alpha 0.3 (E) livellamento esponenziale semplice con alpha 0.2 Le loro statistiche sono quasi identiche, quindi abbiamo davvero can8217t fare la scelta sulla base di errori di previsione 1-step-avanti all'interno del campione di dati. Dobbiamo ripiegare su altre considerazioni. Se crediamo fermamente che ha senso basare la stima attuale tendenza su quanto è successo negli ultimi 20 periodi o giù di lì, siamo in grado di fare un caso per il modello LES con 945 0,3 e 946 0.1. Se vogliamo essere agnostici sul fatto che vi è una tendenza locale, poi uno dei modelli SES potrebbe essere più facile da spiegare e darebbe anche altre previsioni middle-of-the-road per i prossimi 5 o 10 periodi. (Ritorna all'inizio pagina.) Quale tipo di trend-estrapolazione è meglio: L'evidenza empirica orizzontale o lineare suggerisce che, se sono già stati adeguati i dati (se necessario) per l'inflazione, allora può essere imprudente per estrapolare lineare a breve termine tendenze molto lontano nel futuro. Le tendenze evidenti oggi possono rallentare in futuro, dovuta a cause diverse quali obsolescenza dei prodotti, l'aumento della concorrenza, e flessioni cicliche o periodi di ripresa in un settore. Per questo motivo, semplice livellamento esponenziale spesso si comporta meglio out-of-sample che altrimenti potrebbero essere previsto, nonostante la sua quotnaivequot estrapolazione di tendenza orizzontale. modifiche di tendenza smorzato del modello di livellamento esponenziale lineare sono spesso utilizzati in pratica per introdurre una nota di conservatorismo nelle sue proiezioni di tendenza. Il modello LES smorzata-tendenza può essere implementato come un caso particolare di un modello ARIMA, in particolare, un modello (1,1,2) ARIMA. E 'possibile calcolare gli intervalli di confidenza intorno previsioni a lungo termine prodotte da modelli di livellamento esponenziale, considerandoli come casi speciali di modelli ARIMA. (Attenzione: non tutto il software calcola correttamente intervalli di confidenza per questi modelli.) La larghezza degli intervalli di confidenza dipende (i) l'errore RMS del modello, (ii) il tipo di levigatura (semplice o lineare) (iii) il valore (s) della costante di smoothing (s) e (iv) il numero di periodi avanti si prevedono. In generale, gli intervalli distribuite più veloce come 945 diventa più grande nel modello SES e si propagano molto più velocemente quando lineare piuttosto che semplice lisciatura viene utilizzato. Questo argomento è discusso ulteriormente nella sezione modelli ARIMA delle note. (Torna a inizio pagina.) Lineare Indicatore Regressione L'indicatore di regressione lineare è usata per l'identificazione di tendenza e trend following in modo simile a medie mobili. L'indicatore non deve essere confuso con regressione lineare linee che sono rette montati una serie di punti di dati. L'indicatore di regressione lineare traccia i punti finali di tutta una serie di linee di regressione lineare disegnate in giorni consecutivi. Il vantaggio dell'indicatore regressione lineare nel corso di un normale media mobile è che ha meno ritardo rispetto alla media mobile, rispondendo velocemente ai cambiamenti di direzione. Il lato negativo è che è più incline a whipsaws. L'indicatore di regressione lineare è adatto solo per la negoziazione delle tendenze forti. I segnali sono prese in un modo simile a media mobile. Utilizzare la direzione dell'indicatore di regressione lineare per entrare e uscire mestieri di un indicatore a lungo termine come un filtro. Andare a lungo se l'indicatore di regressione lineare salta fuori o uscire da una posizione short. Andare a breve (o uscire da una lunga commercio) se l'indicatore di regressione lineare rifiuta. Una variazione di quanto sopra è quello di inserire i commerci quando il prezzo incrocia l'indicatore di regressione lineare, ma ancora uscire quando l'indicatore di regressione lineare rifiuta. Mouse sopra didascalie grafico per visualizzare segnali di trading. Fuoricampo L quando croci prezzo superiore al 100 giorni lineare Indicatore di regressione, mentre il 300-giorni è in aumento Exit X quando il lineare Indicatore Regressione 100 giorni rifiuta andare a lungo di nuovo a L quando croci prezzo superiore al 100 giorni lineare Indicatore Regressione Exit X quando il lineare indicatore Regressione 100 giorni rifiuta Fuoricampo L quando croci di prezzo superiore a 100 giorni di regressione lineare Uscita X quando l'indicatore di 100 giorni rifiuta Fuoricampo L quando il lineare indicatore Regressione 300-giorno salta fuori dopo che il prezzo attraversato sopra la 100 giorni Indicatore uscita X quando l'indicatore lineare Regressione 300 giorni rifiuta. divergenza ribassista sull'indicatore avverte di un importante Medie tendenza reversal. Moving La media mobile è calcolato facendo la media dei valori di prezzo nell'intervallo lunghezza specificata. 160Note che non c'è intervallo dato, tutti i valori sono rispetto al frame attuale tempo visualizzato del grafico. linea 160A che collega le medie crea un effetto levigante che può aiutare a prevedere le tendenze o rivelare altri modelli importanti. 160The media mobile può essere compensato avanti o indietro nel tempo utilizzando l'impostazione Offset. La media mobile Adaptive diventa più sensibile quando il prezzo si muove in una certa direzione e diventa meno sensibile al movimento dei prezzi quando il prezzo è volatile. Doppia esponenziale (DEMA) La DEMA è costituito da un unico media mobile esponenziale e una doppia media mobile esponenziale. Esponenziale La media mobile esponenziale assegna maggior peso alla più recente bar e poi decresce esponenzialmente con ogni barra. 160It reagisce rapidamente alle recenti variazioni di prezzo. 160 media mobile esponenziale. La media mobile Hull utilizza la radice quadrata del numero di barre per calcolare la levigatura. 160It ha un alto livello di smoothing, ma risponde anche rapidamente alle variazioni di prezzo. 160 Hull media mobile. Regressione lineare Regressione lineare traccia il percorso del punto finale di una linea di regressione lineare indietro attraverso il grafico. La media mobile modificato utilizza un fattore di pendenza per aiutarlo a regolare con la crescente o decrescente prezzo di negoziazione. La media mobile semplice è calcolata sommando i prezzi delle barre precedenti (il numero di barre è selezionata per voi) di chiusura e dividendolo per il numero di barre. peso 160Equal è dato a ogni bar. 160 media mobile semplice. Sine-Weighted il seno ponderata media mobile prende il peso della prima metà di un ciclo di un'onda sinusoidale in modo che il più grande peso è dato ai dati nel mezzo. La media mobile Smoothed dà prezzi recenti la stessa ponderazione dei prezzi storici. Il calcolo utilizza tutti i dati disponibili. Si sottrae ieri Smoothed media mobile dal prezzo di oggi poi aggiunge questo risultato a ieri Smoothed media mobile. Time Series media mobile La serie volta che viene creato utilizzando una tecnica di regressione lineare. 160It trame l'ultimo punto di una linea di regressione lineare in base al numero di barre utilizzati nello studio. 160These punti sono quindi collegati a formare una media mobile. 160160160 Time Series media mobile. La media mobile triangolare triangolare da maggior peso alle barre al centro della serie. 160It è anche una media di due volte in modo che abbia una maggiore livellamento rispetto ad altre medie mobili. 160 media mobile triangolare. La media mobile variabile regola il peso assegnato ad ogni barra basato sulla volatilità nel corrispondente bar. media mobile variabile. Il VIDYA (Volatility Index dinamica media) media mobile utilizza un indice di volatilità per ponderando ogni bar. 160 VIDYA media mobile. La media mobile ponderata assegna maggior peso ai più recenti bar e poi diminuisce aritmeticamente con ciascuna barra, in base al numero di barre scelti per lo studio, fino a raggiungere un peso pari a zero. 160 ponderata media mobile. Welles Wilder Smoothing Il Welles Wilder levigatura media mobile risponde lentamente alle variazioni di prezzo. 160 Welles Wilder levigante media mobile. Preferenze Se si fa clic destro sul movimento Preferenze media e selezionare, si otterrà una delle finestre di dialogo mostrate di seguito. 160All dei diversi tipi di medie mobili hanno le stesse preferenze ad eccezione del Adaptive media mobile e il VIDYA media mobile. 160This è dove si entra la lunghezza (numero di barre da utilizzare), offset (utilizzato per spostare l'intera media mobile avanti o indietro nel tempo), 160and fonte (apertura, massimo, minimo, chiusura). 160This finestra di dialogo consente inoltre di selezionare il colore e lo spessore della linea di media mobile. 160 Moving Preferenze media. Le preferenze per l'Adaptive media mobile consentono di impostare i valori per la Smoothing di Fast e Slow. Le preferenze per il VIDYA media mobile sono le stesse come sopra, tranne che per il campo R2Scale. 160This riferisce alla scala R-quadro che viene utilizzato nel calcolo di regressione lineare. 160 Media mobile Tempo Frames Quando si utilizza medie mobili, ci sono tre intervalli di tempo che sono in genere riconosciuti: a breve termine (es. 10), medio termine (vale a dire 50.) E lungo termine (vale a dire 200.). 160The 10 periodi MA è quello che si muove più vicino al movimento prezzo effettivo. 160The 50-peroid è la seconda più vicina al movimento prezzo effettivo e il 200-periodo è quello più lontano dal movimento dei prezzi. 160 di 10 giorni, 50 giorni e 200 giorni semplici medie mobili sullo stesso chart. Forecasting levigando Tecniche Questo sito è parte del JavaScript e-laboratori oggetti per il processo decisionale di apprendimento. Altri JavaScript in questa serie sono suddivise in diverse aree di applicazione nella sezione MENU in questa pagina. Una serie temporale è una sequenza di osservazioni che vengono ordinati nel tempo. Inerente la raccolta di dati assunto nel tempo è una forma di variazione casuale. Esistono metodi per ridurre di annullare l'effetto dovuto alla variazione casuale. Ampiamente tecniche utilizzate sono levigante. Queste tecniche, se applicato correttamente, rivela più chiaramente le tendenze di fondo. Inserire le serie storiche Riga-saggio in sequenza, a partire dall'angolo sinistro in alto, e il parametro (s), quindi fare clic sul pulsante Calcola per ottenere la previsione di un periodo avanti. caselle vuote non sono inclusi nei calcoli, ma gli zeri sono. In introdurre i dati per passare da cellula a cellula nel data-matrix utilizzare il tasto Tab non freccia o inserire le chiavi. Caratteristiche di serie temporali, che potrebbero essere rivelato esaminando il suo grafico. con i valori previsti, e il comportamento dei residui, la modellazione di previsione condizione. Medie mobili: Le medie mobili sono tra le tecniche più popolari per la pre-elaborazione delle serie storiche. Essi sono utilizzati per filtrare il rumore bianco casuale dai dati, per rendere più agevole la serie storica o anche per sottolineare alcuni componenti informativi contenuti nelle serie temporali. Esponenziale: Questo è uno schema molto popolare per la produzione di una serie storica levigata. Considerando che le medie mobili osservazioni passate hanno lo stesso peso, esponenziale assegna in modo esponenziale diminuzione pesi come l'osservazione invecchiano. In altre parole, osservazioni recenti sono date relativamente più peso nella previsione che le osservazioni più anziani. Doppia esponenziale è meglio alle tendenze di manipolazione. Triple esponenziale è meglio a gestire le tendenze parabola. Una media mobile exponenentially ponderata con una costante livellamento a. corrisponde all'incirca ad una media mobile semplice di lunghezza (cioè periodo) n, dove n e sono legati da: 2 (n1) o N (2 - a) a. Così, per esempio, una media mobile exponenentially ponderato con una lisciatura costante pari a 0,1 corrisponderebbe all'incirca ad una media mobile 19 giorni. E una media mobile semplice di 40 giorni corrisponderebbe grosso modo a una media mobile esponenziale ponderata con una costante livellamento pari a 0,04,878 mila. Holts lineare esponenziale: Supponiamo che la serie temporale è non stagionale, ma fa tendenza del display. Metodo Holts stima sia il livello attuale e la tendenza attuale. Si noti che la media mobile semplice è caso particolare di livellamento esponenziale impostando il periodo di media mobile per la parte intera di (2-Alpha) Alpha. Per la maggior parte dei dati aziendali un parametro Alpha minore di 0,40 è spesso efficace. Tuttavia, si può eseguire una ricerca a griglia dello spazio dei parametri, con 0.1 al 0.9, con incrementi di 0,1. Quindi il miglior alfa ha il più piccolo errore assoluto medio (MA errore). Come confrontare diversi metodi di lisciatura: Anche se ci sono indicatori numerici per valutare l'accuratezza della tecnica di previsione, l'approccio più ampiamente è nell'uso confronto visivo di diverse previsioni per valutare la loro accuratezza e scegliere tra i vari metodi di previsione. In questo approccio, si deve tracciare (utilizzando, ad esempio Excel) sullo stesso grafico i valori originali di una variabile serie storiche ei valori previsti di diversi metodi di previsione diversi, facilitando in tal modo un confronto visivo. È possibile, come proiettando le ipotesi precedenti, levigando Tecniche JavaScript per ottenere i valori di previsione passato in base ad smoothing tecniche che utilizzano il parametro unico singolo. Holt, and Winters methods use two and three parameters, respectively, therefore it is not an easy task to select the optimal, or even near optimal values by trial-and errors for the parameters. The single exponential smoothing emphasizes the short-range perspective it sets the level to the last observation and is based on the condition that there is no trend. The linear regression, which fits a least squares line to the historical data (or transformed historical data), represents the long range, which is conditioned on the basic trend. Holts linear exponential smoothing captures information about recent trend. The parameters in Holts model is levels-parameter which should be decreased when the amount of data variation is large, and trends-parameter should be increased if the recent trend direction is supported by the causal some factors. Short-term Forecasting: Notice that every JavaScript on this page provides a one-step-ahead forecast. To obtain a two-step-ahead forecast . simply add the forecasted value to the end of you time series data and then click on the same Calculate button. You may repeat this process for a few times in order to obtain the needed short-term forecasts.

Comments